Unraveling the Web: An Introduction to
Penetration Testing

Chuanshu

May 4, 2025

Outline

@ Introduction

@ Web security concepts

© Cross Site Request Forgery

@ Conclusion

Introduction
@0000

Hello BSides Ballarat!

Introduction
(o] Jelele]

Me

@ | have been a pentester for 3 years
@ Occasionally | play capture the flag (CTF)

o | love puzzles

Introduction
[e]e] Tele]

Penetration testing

e Offensive side of security

@ Hired by companies to hack their systems before they are
hacked by someone else
e Wide array of skills

Application testing (Web, desktop, mobile etc)
Network testing

Phishing/Social engineering campaigns
Physical access testing

Introduction
[e]e]e] o]

Web application testing

o Many different kinds of web apps exist
@ Look for common vulnerabilities

o OWASP (Open Worldwide Application Security Project)
o MITRE CWE (Common Weakness Enumeration)

Introduction
0000e

Talk aims

@ Explore a simple web attack: Cross site request forgery
@ Overview of modern web security mechanisms

@ Aim: To give a responsible introduction to web application
hacking

Web security concepts
0000000000

Web security concepts

o Authentication
o Browser features

e Cookies
o localStorage

Web security concepts
O@000000000

Authentication

@ Authentication is like the front door to an application
e Traditionally username/password
@ Big push for Multi factor authentication (MFA)

Web security concepts
[e]e] lelelelelelele]e]

Authentication

username/password%D,

«— partially authenticated session

MFA cod \
AR

Client

«————fully authenticated session.

accounts.google.com

@ Server returns information about authentication status

@ Authentication information stored in browser

Web security concepts
[ee]e] lelelelelele]e]

What's in a browser

@ We are particularly interested in where secrets are stored

@ Browser storage has gotten much more complex over time to
support complex app designs and requirements

o Browser storage is designed with security in mind !

"https://infosec.mozilla.org/guidelines/web_security

https://infosec.mozilla.org/guidelines/web_security

Web security concepts

[e]e]o]e] lelele]elele)

What's in a browser

@reddi'r a e © Search in ricyt

G Home =)

@) Popular
& Answers Bea
O® O nspector @D C
» B cache storage
S
B indexed DB

B Local Storage

r’cybersecurity

{} styleEditor () Performance {0k Memory B Storage

S) on Storage

Web security concepts
[e]e]ele]e] lelelele]e]

What's in a browser

o Cache storage and IndexedDB are for web workers 2

e Wont be going through them in this talk, recommended
reading if interested:
e https://portswigger.net/research/
hijacking-service-workers-via-dom-clobbering

2https-
//developer.mozilla.org/en-US/docs/Web/API/Web_Workers-API

https://portswigger.net/research/hijacking-service-workers-via-dom-clobbering
https://portswigger.net/research/hijacking-service-workers-via-dom-clobbering
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API

Web security concepts
[e]e]ele]ele] lelele]e]

Cookies

@ Cookies were the original way for apps to store data in a user's
browser

@ Partitioned based on web origin, e.g. accounts.google.com and
www.reddit.com are different origins

@ Sent on each request to the relevant origin (almost always)

Web security concepts
0000000000

Cookies

(G)

| www.google.com
.google.com

4
A\ 4

accounts.google.com

G-

accounts.google.com

Browser

www.reddit.com

www.reddit.com

Web security concepts
0000000000

Cookies

HTTPOnly Cannot be accessed by JavaScript
Secure Only transmitted over HTTPS connections
SameSite Whether cookies are sent over cross-origin requests
@ Strict, Lax (default), and None

Web security concepts
00000000080

localStorage and sessionStorage

@ Used to store much larger amounts of data that doesn't need
to be sent to the server on each request

@ localStorage persists across sessions, sessionStorage cleared
when page is closed or reloaded

@ Also partitioned by origin by the browser, always accessible by
JavaScript

Web security concepts
0000000000 e

Web security concepts summary

@ Authentication requires exchanging information such as
username or passwords for a secret stored in browser

@ Browser storage is separated by web origin

@ Cookies are small bits of data sent with each request (most of
the time)

@ localStorage and sessionStorage are a newer storage
mechanism

Cross Site Request Forgery
0000000000000

Cross Site Request Forgery

Request

\JIIIII e

Client Server

@ CSRF is a client side attack

o Client-side attacks target the application running in another
user's browser

@ Server-side attacks target the application server or other
backend components

Cross Site Request Forgery
0®00000000000

Cross site request forgery

@ A common goal is to leak information stored inside the target's

browser, usually authentication secrets to gain control of that
user's accounts

@ Requires the target to load malicious content in their browser:
"1-click" attacks

Cross Site Request Forgery
00e0000000000

Cross site request forgery (CSRF)

@ Rather than leaking secrets, the goal of CSRF attacks is to
perform actions in the vulnerable web app as the target user

o If leaking client secrets is like stealing someone's keys, CSRF is
like tricking someone inside the house into opening the door
for you

@ Scenario: The target clicks on a link sent to them by an
attacker while logged in to the vulnerable application:

e i.e. the secrets for that application are stored in the target's
browser

Cross Site Request Forgery
0008000000000

Example 1: GET based CSRF

@ Weakness: The web app bank.com uses a GET request to
update user passwords

GET /change-password?new-password=<new password>

@ When the target clicks the link below, the browser
automatically sends a GET request with the parameter
?new-password=hacked!1.

@ If the target is authenticated using cookies, this request will be
authenticated

https://bank.com/change-password?new-password=hacked!1 }

Cross Site Request Forgery
0000@00000000

Example 2: POST based CSRF

o Weakness: SameSite attribute of authentication cookie is None

@ The snippet below could be included within a completely
benign looking page or email

o Doesn't work if SameSite attribute is Secure or Lax

<form method="post" action="https://bank.com/change-password">
<input type="hidden" name="new-password" value="hackedl!"/>
<input type="submit" />

</form>

<script>document.forms[0] .submit ()</script>

Cross Site Request Forgery
0000080000000

Example 2: POST based CSRF (discussion)

@ Browser protects you against POST based CSRF attacks as
Cookies are set to SameSite by default

@ Security guidelines should forbid using GET requests to make
state changing operations

Cross Site Request Forgery
000000@000000

Interlude

@ CSREF issues were rampant circa 2012

@ Browsers now make it very difficult to make your app
vulnerable to CSRF

Cross Site Request Forgery
0000000800000

Example 3: No cookies involved

@ App used Authorization header to send user tokens
o Tokens were stored in localStorage of admin.app.com

@ Weakness: The app automatically makes authenticated
requests using variables in the URL

@ Browsing to https://admin.app.com/users/1000 sends the
request:

Request

GET /users/1000
Host: api.app.com
Authorization: <token>

https://admin.app.com/users/1000

Cross Site Request Forgery
0000000 0e0000

Example 3: No cookies involved

@ Browsing to https://admin.app.com/users/foo gave me a
"User not found" error:

@ Browsing to https://admin.app.com/users/%252f gave me
a different error:

GET /users/%2f 404 Not Found

Host: api.app.com
Authorization: <token>

{
"status": "404",
"error": "Path not found",
"path": "/users//"

} v

https://admin.app.com/users/foo
https://admin.app.com/users/%252f

Cross Site Request Forgery
0000000008000

Example 3: No cookies involved

@ Checked API routes to see if there were any state changing
GET requests

@ There was one: /admin/verify-user/1000

@ Use path traversal to navigate backwards:
/users/../admin/verify-user/1000
o Note: Directly accessing admin.app.com/admin wouldn't
work as there was no automatic API call
e Note: Directly accessing api.app.com wouldn't work as the
user token was stored in localStorage on admin.app.com

Cross Site Request Forgery
000000000 0e00

Example 3: No cookies involved

e Malicious URL:
e https://admin.app.com/users/%252e%252e%252fadmin,

252fverify-user?’,252£1000

Response
200 OK

Request
GET /admin/verify-user/1000

Host: api.app.com
Authorization: <token>

{

"message": "user verified"

}

https://admin.app.com/users/%252e%252e%252fadmin%252fverify-user%252f1000
https://admin.app.com/users/%252e%252e%252fadmin%252fverify-user%252f1000

Cross Site Request Forgery
0000000000080

Example 3: No cookies involved

@ Possible to create a link that sent arbitrary authenticated GET
requests on behalf of the user who clicks on the link
@ Reshaped my idea of CSRF attacks

o Look for automatic requests being sent — Sources
o Look for APIs that could be consumed using these automatic
requests — Sinks

@ The idea of a POST sink was not unreasonable

Cross Site Request Forgery
00000000000 0e

Example 3: No cookies involved (discussion)

@ Cause of the issue was not due to legacy systems but rather a
redesign of their frontend

@ Single page apps are increasing in popularity - these apps load
a single HTML page and rely on JavaScript to render different
components

Conclusion
[leJe]e]

Relevance to today

@ Web apps are becoming increasingly client heavy
@ Popularising of client-side protocols such as OAuth
e Recommend reading my blog!
@ Targeted and sophisticated phishing incidents occur very
frequently in large companies

Conclusion
[e] Te]e]

Conclusion

@ Web technologies will continue to get more complex to
support the needs of different application designs

e Complexity often creates security issues
@ Secure by default, insecure by choice

@ Problems arise when features designed for a certain purpose
are used in unexpected ways

Conclusion
[e]e] o]

Recommended study

o Educational labs
o PortSwigger labs (free)
o Pentesterlab (free and paid option)
e Hack The Box
o Wargames
o OverTheWire
o CTFs

o PicoCTF for practice

o DownUnder CTF (local)

e Happening all the time, find at ctftime.oeg
@ Blogs & Articles

o Infosec aggregator: talkback.sh

Conclusion
[e]e]e])

Questions?

	Introduction
	Web security concepts
	Cross Site Request Forgery
	Conclusion

