
Introduction Web security concepts Cross Site Request Forgery Conclusion

Unraveling the Web: An Introduction to
Penetration Testing

Chuanshu

May 4, 2025



Introduction Web security concepts Cross Site Request Forgery Conclusion

Outline

1 Introduction

2 Web security concepts

3 Cross Site Request Forgery

4 Conclusion



Introduction Web security concepts Cross Site Request Forgery Conclusion

Hello BSides Ballarat!



Introduction Web security concepts Cross Site Request Forgery Conclusion

Me

I have been a pentester for 3 years
Occasionally I play capture the flag (CTF)
I love puzzles



Introduction Web security concepts Cross Site Request Forgery Conclusion

Penetration testing

Offensive side of security
Hired by companies to hack their systems before they are
hacked by someone else
Wide array of skills

Application testing (Web, desktop, mobile etc)
Network testing
Phishing/Social engineering campaigns
Physical access testing



Introduction Web security concepts Cross Site Request Forgery Conclusion

Web application testing

Many different kinds of web apps exist
Look for common vulnerabilities

OWASP (Open Worldwide Application Security Project)
MITRE CWE (Common Weakness Enumeration)



Introduction Web security concepts Cross Site Request Forgery Conclusion

Talk aims

Explore a simple web attack: Cross site request forgery
Overview of modern web security mechanisms
Aim: To give a responsible introduction to web application
hacking



Introduction Web security concepts Cross Site Request Forgery Conclusion

Web security concepts

Authentication
Browser features

Cookies
localStorage



Introduction Web security concepts Cross Site Request Forgery Conclusion

Authentication

Authentication is like the front door to an application
Traditionally username/password
Big push for Multi factor authentication (MFA)



Introduction Web security concepts Cross Site Request Forgery Conclusion

Authentication

Server returns information about authentication status
Authentication information stored in browser



Introduction Web security concepts Cross Site Request Forgery Conclusion

What’s in a browser

We are particularly interested in where secrets are stored
Browser storage has gotten much more complex over time to
support complex app designs and requirements
Browser storage is designed with security in mind 1

1https://infosec.mozilla.org/guidelines/web_security

https://infosec.mozilla.org/guidelines/web_security


Introduction Web security concepts Cross Site Request Forgery Conclusion

What’s in a browser



Introduction Web security concepts Cross Site Request Forgery Conclusion

What’s in a browser

Cache storage and IndexedDB are for web workers 2

Wont be going through them in this talk, recommended
reading if interested:

https://portswigger.net/research/
hijacking-service-workers-via-dom-clobbering

2https:
//developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API

https://portswigger.net/research/hijacking-service-workers-via-dom-clobbering
https://portswigger.net/research/hijacking-service-workers-via-dom-clobbering
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API


Introduction Web security concepts Cross Site Request Forgery Conclusion

Cookies

Cookies were the original way for apps to store data in a user’s
browser
Partitioned based on web origin, e.g. accounts.google.com and
www.reddit.com are different origins
Sent on each request to the relevant origin (almost always)



Introduction Web security concepts Cross Site Request Forgery Conclusion

Cookies



Introduction Web security concepts Cross Site Request Forgery Conclusion

Cookies

HTTPOnly Cannot be accessed by JavaScript
Secure Only transmitted over HTTPS connections

SameSite Whether cookies are sent over cross-origin requests
Strict, Lax (default), and None



Introduction Web security concepts Cross Site Request Forgery Conclusion

localStorage and sessionStorage

Used to store much larger amounts of data that doesn’t need
to be sent to the server on each request
localStorage persists across sessions, sessionStorage cleared
when page is closed or reloaded
Also partitioned by origin by the browser, always accessible by
JavaScript



Introduction Web security concepts Cross Site Request Forgery Conclusion

Web security concepts summary

Authentication requires exchanging information such as
username or passwords for a secret stored in browser
Browser storage is separated by web origin
Cookies are small bits of data sent with each request (most of
the time)
localStorage and sessionStorage are a newer storage
mechanism



Introduction Web security concepts Cross Site Request Forgery Conclusion

Cross Site Request Forgery

CSRF is a client side attack
Client-side attacks target the application running in another
user’s browser
Server-side attacks target the application server or other
backend components



Introduction Web security concepts Cross Site Request Forgery Conclusion

Cross site request forgery

A common goal is to leak information stored inside the target’s
browser, usually authentication secrets to gain control of that
user’s accounts
Requires the target to load malicious content in their browser:
"1-click" attacks



Introduction Web security concepts Cross Site Request Forgery Conclusion

Cross site request forgery (CSRF)

Rather than leaking secrets, the goal of CSRF attacks is to
perform actions in the vulnerable web app as the target user
If leaking client secrets is like stealing someone’s keys, CSRF is
like tricking someone inside the house into opening the door
for you
Scenario: The target clicks on a link sent to them by an
attacker while logged in to the vulnerable application:

i.e. the secrets for that application are stored in the target’s
browser



Introduction Web security concepts Cross Site Request Forgery Conclusion

Example 1: GET based CSRF

Weakness: The web app bank.com uses a GET request to
update user passwords
GET /change-password?new-password=<new password>

When the target clicks the link below, the browser
automatically sends a GET request with the parameter
?new-password=hacked!1.
If the target is authenticated using cookies, this request will be
authenticated

https://bank.com/change-password?new-password=hacked!1



Introduction Web security concepts Cross Site Request Forgery Conclusion

Example 2: POST based CSRF

Weakness: SameSite attribute of authentication cookie is None
The snippet below could be included within a completely
benign looking page or email
Doesn’t work if SameSite attribute is Secure or Lax

<form method="post" action="https://bank.com/change-password">
<input type="hidden" name="new-password" value="hacked1!"/>
<input type="submit" />

</form>
<script>document.forms[0].submit()</script>



Introduction Web security concepts Cross Site Request Forgery Conclusion

Example 2: POST based CSRF (discussion)

Browser protects you against POST based CSRF attacks as
Cookies are set to SameSite by default
Security guidelines should forbid using GET requests to make
state changing operations



Introduction Web security concepts Cross Site Request Forgery Conclusion

Interlude

CSRF issues were rampant circa 2012
Browsers now make it very difficult to make your app
vulnerable to CSRF



Introduction Web security concepts Cross Site Request Forgery Conclusion

Example 3: No cookies involved

App used Authorization header to send user tokens
Tokens were stored in localStorage of admin.app.com

Weakness: The app automatically makes authenticated
requests using variables in the URL
Browsing to https://admin.app.com/users/1000 sends the
request:

Request
GET /users/1000
Host: api.app.com
Authorization: <token>

https://admin.app.com/users/1000


Introduction Web security concepts Cross Site Request Forgery Conclusion

Example 3: No cookies involved

Browsing to https://admin.app.com/users/foo gave me a
"User not found" error:
Browsing to https://admin.app.com/users/%252f gave me
a different error:

Request
GET /users/%2f
Host: api.app.com
Authorization: <token>

Response
404 Not Found
...

{
"status": "404",
"error": "Path not found",
"path": "/users//"

}

https://admin.app.com/users/foo
https://admin.app.com/users/%252f


Introduction Web security concepts Cross Site Request Forgery Conclusion

Example 3: No cookies involved

Checked API routes to see if there were any state changing
GET requests
There was one: /admin/verify-user/1000
Use path traversal to navigate backwards:
/users/../admin/verify-user/1000

Note: Directly accessing admin.app.com/admin wouldn’t
work as there was no automatic API call
Note: Directly accessing api.app.com wouldn’t work as the
user token was stored in localStorage on admin.app.com



Introduction Web security concepts Cross Site Request Forgery Conclusion

Example 3: No cookies involved

Malicious URL:
https://admin.app.com/users/%252e%252e%252fadmin%
252fverify-user%252f1000

Request
GET /admin/verify-user/1000
Host: api.app.com
Authorization: <token>

Response
200 OK
...

{
"message": "user verified"

}

https://admin.app.com/users/%252e%252e%252fadmin%252fverify-user%252f1000
https://admin.app.com/users/%252e%252e%252fadmin%252fverify-user%252f1000


Introduction Web security concepts Cross Site Request Forgery Conclusion

Example 3: No cookies involved

Possible to create a link that sent arbitrary authenticated GET
requests on behalf of the user who clicks on the link
Reshaped my idea of CSRF attacks

Look for automatic requests being sent → Sources
Look for APIs that could be consumed using these automatic
requests → Sinks

The idea of a POST sink was not unreasonable



Introduction Web security concepts Cross Site Request Forgery Conclusion

Example 3: No cookies involved (discussion)

Cause of the issue was not due to legacy systems but rather a
redesign of their frontend
Single page apps are increasing in popularity - these apps load
a single HTML page and rely on JavaScript to render different
components



Introduction Web security concepts Cross Site Request Forgery Conclusion

Relevance to today

Web apps are becoming increasingly client heavy
Popularising of client-side protocols such as OAuth

Recommend reading my blog!

Targeted and sophisticated phishing incidents occur very
frequently in large companies



Introduction Web security concepts Cross Site Request Forgery Conclusion

Conclusion

Web technologies will continue to get more complex to
support the needs of different application designs
Complexity often creates security issues
Secure by default, insecure by choice
Problems arise when features designed for a certain purpose
are used in unexpected ways



Introduction Web security concepts Cross Site Request Forgery Conclusion

Recommended study

Educational labs
PortSwigger labs (free)
Pentesterlab (free and paid option)
Hack The Box

Wargames
OverTheWire

CTFs
PicoCTF for practice
DownUnder CTF (local)
Happening all the time, find at ctftime.oeg

Blogs & Articles
Infosec aggregator: talkback.sh



Introduction Web security concepts Cross Site Request Forgery Conclusion

Questions?


	Introduction
	Web security concepts
	Cross Site Request Forgery
	Conclusion

